RESEARCH
<< back
Breaking through outstanding problems in stellar evolution with ultra-precise space-based photometry (BreakStarS)
COMPETE2020: POCI-01-0145-FEDER-030389 & FCT: PTDC/FIS-AST/30389/2017

Principal Investigator
Margarida S. Cunha

Abstract
The last decade has witnessed a dramatic change in stellar astrophysics research, as a result of the launch of space missions capable of acquiring ultra-precise photometric time-series, such as CoRoT (France/ESA; 2006-2012) and Kepler/K2 (NASA; 2009-), and the consequent detection of stellar oscillations in thousands of stars. Through the study of these oscillations the most fundamental unresolved questions about the physics that govern stellar evolution, in particular related to the mixing of chemical elements, can finally be directly addressed. Nevertheless, addressing these questions requires the development of theoretical tools capable of unveiling the information held in the seismic data.

The project will focus on evolved stars, where stellar evolution is more uncertain and more strongly dependent on the unknown mixing processes. Ground-breaking asteroseismic tools aimed at constraining the chemical gradients near and/or inside stellar cores will be developed and applied in this project to explore space-based data on thousands of evolved stars.

The work will be organized in five science tasks. Three of these are focused on theoretical developments of: (1) an analytical tool to fit pulsation spectra of red-giant stars and uncover the presence of sharp structural variations within their innermost layers; (2) a ultra-fast pulsation code and; (3) a new model-to-data fitting procedure specially designed to explore the seismic signatures of the waves that are most sensitive to the stellar cores. The other two tasks will deal with the exploitation of the data, based on the developed tools.

The project will enable inferences of the structure of the innermost stellar layers, such as the size of the stellar cores, maximum extent of the convective envelopes, and sharpness of the chemical gradients, which will be used as tests to prescriptions of chemical mixing included in state-of-the-art stellar evolution models. The results of these tests will be used to improve the description of mixing processes in stellar evolution models that will in turn be used in the modelling of the seismic data to determine accurate stellar masses and ages for different sets of stars. This will have a far-reaching impact in studies that depend directly on the knowledge of these stellar parameters, such as those aimed at the characterization of exoplanetary systems and those aimed at reconstructing the history of the Milky Way.

The success of this project stands on the unique and complementary expertise of the team members in theory of stellar pulsations and stellar evolution, as well as on data analysis and modelling, and on their leadership role in the context of the most important international projects currently undergoing in the field of asteroseismology, related to Kepler/K2 mission, but also to the future TESS (NASA) and PLATO2.0 (ESA) missions.


- total investment (investimento total): € 236.718,95
- EU financial support (apoio financeiro da UE): € 201.2011,11
- national public financial support (apoio financeiro público nacional): € 35.507,84

Start
1 May 2018
End
30 April 2021

Funding Institution
Fundação para a Ciência e a Tecnologia

Fundação para a Ciência e Tecnologia  Compete 2020  Portugal 2020  FEDER

Instituto de Astrofísica e Ciências do Espaço Universidade do Porto Faculdade de Ciências da Universidade de Lisboa
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia