A. A. Nucita, L. Conversi, A. Verdier, A. Franco, S. Sacquegna, M. Pöntinen, B. Altieri, B. Carry, F. De Paolis, F. Strafella, V. Orofino, M. Maiorano, V. Kansal, R. Vavrek, M. Miluzio, M. Granvik, V. Testa, N. Aghanim, S. Andreon, N. Auricchio, M. Baldi, S. Bardelli, E. Branchini, M. Brescia, J. Brinchmann, S. Camera, V. Capobianco, C. Carbone, J. Carretero, S. Casas, M. Castellano, G. Castignani, S. Cavuoti, A. Cimatti, G. Congedo, C. J. Conselice, Y. Copin, F. Courbin, H. M. Courtois, A. C. da Silva, H. Degaudenzi, A. M. Di Giorgio, J. Dinis, F. Dubath, X. Dupac, S. Dusini, M. Farina, S. Farrens, S. Ferriol, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. R. Gillis, C. Giocoli, P. Gómez-Alvarez, A. Grazian, F. Grupp, S. V. H. Haugan, J. Hoar, W. A. Holmes, F. Hormuth, A. Hornstrup, P. Hudelot, K. Jahnke, M. Jhabvala, E. Keihänen, S. Kermiche, A. Kiessling, M. Kilbinger, R. Kohley, B. Kubik, M. Kümmel, H. Kurki-Suonio, R. J. Laureijs, S. Ligori, P. B. Lilje, V. Lindholm, I. Lloro, E. Maiorano, O. Mansutti, O. Marggraf, K. Markovic, N. Martinet, F. Marulli, R. Massey, D. C. Masters, E. Medinaceli, S. Mei, Y. Mellier, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, R. Nakajima, S. M. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. A. Popa, L. Pozzetti, F. Raison, R. Rebolo, A. Renzi, J. D. Rhodes, G. Riccio, E. Romelli, M. Roncarelli, E. Rossetti, R. Saglia, D. Sapone, B. Sartoris, M. Schirmer, P. Schneider, A. Secroun, G. Seidel, S. Serrano, C. Sirignano, G. Sirri, J. Skottfelt, L. Stanco, J. Steinwagner, P. Tallada-Crespí, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, I. Tutusaus, L. Valenziano, T. Vassallo, G. A. Verdoes Kleijn, A. Veropalumbo, Y. Wang, J. Weller, A. Zacchei, E. Zucca, M. Bolzonella, C. Burigana, V. Scottez
Abstract
The ESA Euclid mission will survey more than 14 000 deg2 of the sky in visible and near-infrared wavelengths, mapping the extragalactic sky to constrain our cosmological model of the Universe. Although the survey focusses on regions further than 15° from the ecliptic, it should allow for the detection of more than about 105 Solar System objects (SSOs). After simulating the expected signal from SSOs in Euclid images acquired with the visible camera (VIS), we describe an automated pipeline developed to detect moving objects with an apparent velocity in the range of 0.1–10″ h−1, typically corresponding to sources in the outer Solar System (from Centaurs to Kuiper-belt objects). In particular, the proposed detection scheme is based on SExtractor
software and on applying a new algorithm capable of associating moving objects amongst different catalogues. After applying a suite of filters to improve the detection quality, we study the expected purity and completeness of the SSO detections. We also show how a Kohonen self-organising neural network can be successfully trained (in an unsupervised fashion) to classify stars, galaxies, and SSOs. By implementing an early-stopping method in the training scheme, we show that the network can be used in a predictive way, allowing one to assign the probability of each detected object being a member of each considered class.
Keywords
methods: data analysis / methods: numerical / comets: general / Kuiper belt: general / minor planets, asteroids: general / Oort Cloud
Notes
This paper is published on behalf of the Euclid Consortium.
Astronomy & Astrophysics
Volume A116, Article Number A116, Number of pages 15
2025 February