RESEARCH
<< back
Probing the cores of subdwarf B stars: How they compare to cores in helium core-burning red giants

M. S. Cunha, J. Amaral, S. Cunha Avelino, A. J. G. Falorca, Y. C. Damasceno, P. P. Avelino

Abstract
The mixing of material from stellar convective cores into their adjacent radiative layers has been a matter of long-standing debate. Pulsating subdwarf B stars offer excellent conditions to advance our understanding of this problem. In this work we use a model-independent approach to infer information about the cores of three subdwarf B stars and compare it with similar inferences from an earlier analysis of red giants in the helium core-burning phase. This is achieved by fitting an analytical description of the gravity-mode pulsation periods to pulsation data collected by the Kepler satellite. From the fits we infer the reduced asymptotic period spacings and the amplitude and position of sharp structural variations associated with chemical discontinuities in the stellar interiors. Our results indicate the presence of sharp structural variations with similar properties in all three stars, located near the edge of the gravity-mode propagation cavity and likely associated with the C-O/He transition. We find that these structural variations differ systematically from those of helium core-burning red giant stars, having larger amplitudes and being located at a larger buoyancy radius. This suggests that chemical mixing beyond the adiabatically stratified core into the radiatively stratified layers may be more extensive in subdwarf B stars than in helium core-burning red giants. Alternatively, the stratification of the mixing region beyond the adiabatically stratified core may differ significantly between the two types of stars. The model-independent constraints set on the structural variations inside these three stars are the first of a kind and will be key to enhancing the modelling of layers adjacent to stellar convective cores and to testing non-canonical stellar evolution channels leading to the formation of hot subdwarf stars.

Keywords
stars: evolution / stars: interiors / stars: oscillations / Solar and Stellar Astrophysics

Astronomy & Astrophysics
Volume 699, Article Number A111, Number of pages 23
2025 July

>> ADS>> DOI

Faculdade de Ciências da Universidade de Lisboa Universidade do Porto Faculdade de Ciências e Tecnologia da Universidade de Coimbra
Fundação para a Ciência e a Tecnologia COMPETE 2020 PORTUGAL 2020 União Europeia