Y. Yu, Q. Chen, L. Jing, C. Pappalardo, H. Miranda
Abstract
The star formation rate (SFR) is a crucial astrophysical characteristic for understanding the formation and evolution of galaxies, determining the interplay between the interstellar medium and stellar activity. The mainstream approach to studying stellar properties in galaxies relies on stellar population synthesis models. However, these methods neglect nebular emission, which can bias SFR estimates. Recent studies have indicated that nebular emission is non-negligible in strongly star-forming regions. However, targeted research is currently limited, particularly regarding galaxies at slightly higher redshifts (z<0.4). In this work, 696 star-formation galaxies with stellar mass in 109‑1011M⊙ are selected from the SDSS-DR18 and their spectra are fitted via the fitting analysis using differential evolution optimization (FADO) technique. FADO self-consistently fits both stellar and nebular emissions in galaxy spectra. The results show that the median Hα flux from FADO fitting differs from that of qsofitmore by approximately 0.028 dex. Considering the stellar mass effect, we found that although the nebular emission contribution (Nebular Ratio hereafter) is minimal, it increases modestly with redshift. We advocate explicitly accounting for nebular emission in the spectral fitting of higher-redshift galaxies, as its inclusion is essential to obtaining higher precision in future analyses.
Keywords
star formation rate / nebular ratio / galaxies / FADO / low redshift
Universe
Volume 11, Number 9, id.285
2025 September









